2020ok Directory of FREE Online Books and FREE eBooks |

## Introduction to Quantum Mechanicsby Daniel I. Fivel Download Book(Respecting the intellectual property of others is utmost important to us, we make every effort to make sure we only link to legitimate sites, such as those sites owned by authors and publishers. If you have any questions about these links, please contact us.) link 1 About BookBook Description This book first teaches learners how to The publisher, Prentice-Hall Engineering/Science/MathematicsWritten by the author of the best-selling E & M text, this text is designed to teach students how to DO quantum mechanics. Part I covers the basic theory; Part II develops approximation schemes and real-world applications. Excerpt. © Reprinted by permission. All rights reserved.Unlike Newton's mechanics, or Maxwell's electrodynamics, or Einstein's relativity, quantum theory was not created—or even definitively packaged—by one individual, and it retains to this day some of the scars of its exhilarating but traumatic youth. There is no general consensus as to what its fundamental principles are, how it should be taught, or what it really "means." Every competent physicist can "do" quantum mechanics, but the stories we tell ourselves about what we are doing are as various as the tales of Scheherazade, and almost as implausible. Niels Bohr said, "If you are not confused by quantum physics then you haven't really understood it"; Richard Feynman remarked, "I think I can safely say that nobody understands quantum mechanics." The purpose of this book is to teach you how to Not only is quantum theory conceptually rich, it is also technically difficult, and exact solutions to all but the most artificial textbook examples are few and far between. It is therefore essential to develop special techniques for attacking more realistic problems. Accordingly, this book is divided into two parts; Part I covers the basic theory, and Part II assembles an arsenal of approximation schemes, with illustrative applications. Although it is important to keep the two parts This book is intended for a one-semester or one-year course at the junior or senior level. A one-semester course will have to concentrate mainly on Part I; a full-year course should have room for supplementary material beyond Part II. The reader must be familiar with the rudiments of linear algebra (as summarized in the Appendix), complex numbers, and calculus up through partial derivatives; some acquaintance with Fourier analysis and the Dirac delta function would help. Elementary classical mechanics is essential, of course, and a little electrodynamics would be useful in places. As always, the more physics and math you know the easier it will be, and the more you will get out of your study. But I would like to emphasize that quantum mechanics is not, in my view, something that flows smoothly and naturally from earlier theories. On the contrary, it represents an abrupt and revolutionary departure from classical ideas, calling forth a wholly new and radically counterintuitive way of thinking about the world. That, indeed, is what makes it such a fascinating subject. At first glance, this book may strike you as forbiddingly mathematical. We encounter Legendre, Hermite, and Laguerre polynomials, spherical harmonics, Bessel, Neumann, and Hankel functions, Airy functions, and even the Riemann zeta function—not to mention Fourier transforms, Hilbert spaces, hermitian operators, Clebsch-Gordan coefficients, and Lagrange multipliers. Is all this baggage really necessary? Perhaps not, but physics is like carpentry: Using the right tool makes the job Several readers have noted that there are fewer worked examples in this book than is customary, and that some important material is relegated to the problems. This is no accident. I don't believe you can learn quantum mechanics without doing many exercises for yourself. Instructors should of course go over as many problems in class as time allows, but students should be warned that this is not a subject about which anyone has natural intuitions—you're developing a whole new set of muscles here, and there is simply no substitute for calisthenics. Mark Semon suggested that I offer a "Michelin Guide" to the problems, with varying numbers of stars to indicate the level of difficulty and importance. This seemed like a good idea (though, like the quality of a restaurant, the significance of a problem is partly a matter of taste); I have adopted the following rating scheme: * an essential problem that every reader should study; (No stars at all means fast food: OK if you're hungry, but not very nourishing.) Most of the one-star problems appear at the end of the relevant section; most of the three-star problems are at the end of the chapter. A solution manual is available (to instructors only) from the publisher. In preparing the second edition I have tried to retain as much as possible the spirit of the first. The only wholesale change is Chapter 3, which was much too long and diverting; it has been completely rewritten, with the background material on finite-dimensional vector spaces (a subject with which most students at this level are already comfortable) relegated to the Appendix. I have added some examples in Chapter 2 (and fixed the awkward definition of raising and lowering operators for the harmonic oscillator). In later chapters I have made as few changes as I could, even preserving the numbering of problems and equations, where possible. The treatment is streamlined in places (a better introduction to angular momentum it! Chapter 4, for instance, a simpler proof of the adiabatic theorem in Chapter 10, and a new section on partial wave phase shifts in Chapter 11). Inevitably, the second edition is a bit longer than the first, which I regret, but I hope it is cleaner and more accessible. I have benefited from the comments and advice of many colleagues, who read the original manuscript, pointed out weaknesses (or errors) in the first edition, suggested improvements in the presentation, and supplied interesting problems. I would like to thank in particular P. K. Aravind (Worcester Polytech), Greg Benesh (Baylor), David Boness (Seattle), Burt Brody (Bard), Ash Carter (Drew), Edward Chang (Massachusetts), Peter Copings (Swarthmore), Richard Crandall (Reed), Jeff Dunham (Middlebury), Greg Elliott (Puget Sound), John Essick (Reed), Gregg Franklin (Carnegie Mellon), Henry Greenside (Duke), Paul Haines (Dartmouth), J. R. Huddle (Navy), Larry Hunter (Amherst), David Kaplan (Washington), Alex Kuzmich (Georgia Tech), Peter Leung (Portland State), Tony Liss (Illinois), Jeffry Mallow (Chicago Loyola), James McTavish (Liverpool), James Nearing (Miami), Johnny Powell (Reed), Krishna Rajagopal (MIT), Brian Raue (Florida International), Robert Reynolds (Reed), Keith Riles (Michigan), Mark Semon (Bates), Herschel Snodgrass (Lewis and Clark), John Taylor (Colorado), Stavros Theodorakis (Cyprus), A. S. Tremsin (Berkeley), Dan Velleman (Amherst), Nicholas Wheeler (Reed), Scott Willenbrock (Illinois), William Wootters (Williams), Sam Wurzel (Brown), and Jens Zorn (Michigan). ## Related Free eBooks- Foundations of Quantum Mechanics & Quantum Information
- Operator Algebras and Quantum Statistical Mechanics, Volumes I & II
- lecture notes in Quantum Mechanics
- Quantum Mechanics
- Quantum Mechanics in Chemistry
- ADVANCED QUANTUM MECHANICS
- Lecture Notes on Mechanics, Probability and Irreversibility
- Lectures on Mechanics, Dynamics, and Symmetry
- Lecture Notes from the Quantum Field Theory program at IAS, 1996-1997
- Mathematical ideas and notions of quantum field theory
- Mechanics and Special Relativity introductiry textbook
- Non-Equilibrium Statistical Mechanics
- Operator Algebras And Quantum Statistical Mechanics
- Philosophy of Quantum Mechanics, Spring 2005
- Quantum Field Theory
- Quantum Geometry and more
- Quantum Probability Theory
- Introductory Quantum Mechanics II, Spring 2005
- Introductory Quantum Mechanics II, Spring 2004
- The Grand Unified Theory Of Classical Quantum Mechanics
- Algebraic Quantum Field Theory
- CLASSICAL AND QUANTUM CHAOS
- Comprehensive textbook on quantum (and classical) field theory
- Computational Quantum Mechanics of Molecular and Extended Systems, Fall 2004
- Continuum Mechanics
- Fluctuating Geometries in Statistical Mechanics and Field Theory
- General Relativity and Quantum Cosmology
- Geometry and Quantum Field Theory, Fall 2002
- Introduction to Algebraic and Constructive Quantum Field Theory
- Introduction to Continuum Mechanics for Engineers
- Introduction to Tensor Calculus and Continuum Mechanics
- Introductory Quantum Mechanics I, Fall 2002
- Introductory Quantum Mechanics I, Fall 2005
- Relativistic Quantum Fields 1
| ## Related Tags |

## Comments

Solar Clathrate, 2008-10-07 13:39:17

## SEND A COMMENT

PLEASE READ: All comments must be approved before appearing in the thread; time and space constraints prevent all comments from appearing. We will only approve comments that are directly related to the article, use appropriate language and are not attacking the comments of others.